Math 246A Lecture 5 Notes

Daniel Raban

October 5, 2018

1 Stereographic Projection and Introduction to Möbius Transformations

1.1 Power series for the complex logarithm

The exponential map $E : \mathbb{C} \to \mathbb{C} \setminus \{0\}$ is onto. Fix $z_0 \in \mathbb{C} \setminus \{0\}$, and let c_0 be such that $E(c_0) = z_0$. Define

$$L(z) = c_0 + \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} \left(\frac{z-z_0}{z_0}\right)^{n+1}.$$

This converges if $|z - z_0| < |z_0|$ and has the property that E(L(z)) = z.

$$L'(z) = \sum_{n=0}^{\infty} (-1)^n \frac{(z-z_0)^n}{z_0^{n+1}} = \frac{1}{z_0} \frac{1}{1+(z-z_0)/z_0} = \frac{1}{z}.$$
$$\frac{d}{dz} z e^{-L(z)} = e^{-L(z)} - \frac{z}{z} e^{-L(z)} = 0.$$

Since $L(z_0) = c_0$, we get that $z_0 e^{-L(z_0)} = 1$. So $\log(z) = L(z) + 2\pi ni$.

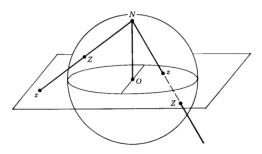
1.2 Stereographic projection

Let $\mathbb{C}^* = \mathbb{C} \cup \{\infty\}$ be the **one point compactification** of \mathbb{C} .

Definition 1.1. Let Ω be a neighborhood of $z_0 \in \mathbb{C}$, and let $f\Omega \to \mathbb{C}^*$ be such that $f(z_0) = \infty$. Then f is **meromorphic** at z_0 if 1/f is analytic in Ω .

Example 1.1. Let $U = \{\infty\} \cup \{z : |z| > R\}$ and $f : U \to \mathbb{C}^*$. Then f is analytic if f(1/z) is analytic on $\{w : |w| < 1/R\}$.

Let $S^2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^3 = 1\}$. Let N = (0, 0, 1) be the north pole. Let Z be a point on the sphere, and draw the line connecting X and Z. Then let z = T(Z) be the point where this line intersects the xy plane. View this as a point on the complex plane. Here T(Z) = tN + (1-t)Z for some t > 0. Here is a picture:¹



Definition 1.2. The map $T: S^2 \setminus \{N\} \to \mathbb{C}$ is called **stereographic projection**.

Observe that $T(x_1, x_2, 0) = x_1 + ix_2$, so T sends the equator of S^2 to itself.

Lemma 1.1. The map $T: S^2 \setminus \{N\} \to \mathbb{C}$ is a homeomorphism.

Proof. Let z = T(Z), where $Z = (x_1, x_2, x_3)$. Then (verify yourself that)

$$T(x_1, x_2, x_3) = \frac{x_1 + ix_2}{1 - x_3}.$$

Note that

$$|z|^{2} = \frac{x_{1}^{2} + x_{2}^{2}}{(1 - x_{3})^{2}} = \frac{1 - x_{3}^{2}}{(1 - x_{3})^{2}} = \frac{1 + x_{3}}{1 - x_{3}}.$$

 So

$$x_3 = \frac{|z|^2 - 1}{|z|^2 + 1}, \qquad x_1 = \frac{z + \overline{z}}{1 + |z|^2}, \qquad x_2 = \frac{z - \overline{z}}{i(1 + |z|)^2}.$$

We can extend T to a map $T: S^2 \to \mathbb{C}^*$ by setting $T(N) = \infty$. The homeomorphism property still holds.

Theorem 1.1. Let Γ be a circle on S^2 , so $\Gamma = S^2 \cap \{X : |X - A| = R\}$. Then $T(\Gamma) \cap \mathbb{C}$ is

$$\begin{cases} a \text{ line in } \mathbb{C} & N \in \Gamma \\ a \text{ circle in } \mathbb{C} & N \notin \Gamma. \end{cases}$$

Proof. $\Gamma = S^2 \cap \{\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 = \alpha_0 : \alpha_1^2 + \alpha_2^2 + \alpha_3^2 = 1, \alpha_0 > 0\}.$ Then $z \in T(\Gamma)$ iff

$$\alpha_1 \frac{z + \overline{z}}{1 + |z|^2} + \alpha_2 \frac{z - \overline{z}}{i(1 + |z|)^2} + \alpha_3 \frac{|z|^2 - 1}{|z|^2 + 1} = \alpha_0$$

¹I did not create this picture; I found it on Google.

$$\iff (\alpha_3 - \alpha_0)(x^2 + y^2) + 2\alpha_1 x + 2\alpha_2 y - (\alpha_0 - \alpha_3) = 0.$$

If $\alpha_3 = \alpha_0$, we get a line. Otherwise, we can complete the square.

$$x^{2} + y^{2} + \frac{2\alpha_{1}}{\alpha_{3} - \alpha_{0}}x + \frac{2\alpha_{2}}{\alpha_{3} - \alpha_{0}}y = \frac{\alpha_{3} + \alpha_{0}}{\alpha_{3} - \alpha_{0}}$$

which gives a circle.

Conversely, every circle or line in \mathbb{C} has the form $T(\Gamma)$.

Corollary 1.1.

$$\begin{split} |T^{-1}(z) - T^{-1}(z')| &= \frac{2|z - z'|}{\sqrt{1 + |z|^2}\sqrt{1 + |z'|^2}}, \\ |T^{-1}(z) - T^{-1}(\infty)| &= \frac{2}{\sqrt{1 + |z|^2}}. \end{split}$$

Proof. Homework.

1.3 Möbius transformations

Let $S: \mathbb{C}^* \to \mathbb{C}^*$ be

$$S(z) = \frac{az+b}{cz+d} = w,$$

where $a, b, c, d \in \mathbb{C}$, and $ad - bc \neq 0$. This is invertible because

$$z = \frac{dw - b}{-cw + a} = S^{-1}(w).$$

So S, S^{-1} are bijections from \mathbb{C}^* to \mathbb{C}^* . These are analytic because we can expand the denominator to a convergent power series around a point. Also define $S(\infty) = a/c$ and $S^{-1}(\infty) = -d/c$.

Definition 1.3. The **projective special linear group** is the group of matrices

$$PSL(2,\mathbb{C}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{C}, \det(A) = ab - cd = 1 \right\}$$

Theorem 1.2. The group of Möbius transformations (with group operation composition) is isomorphic to $PSL(2, \mathbb{C})$.

Proof. Let $D: PSL(2, \mathbb{C}) \to MT$ be

$$F\left(\begin{bmatrix}a&b\\c&d\end{bmatrix}\right)(z) = \frac{az+b}{cz+d}.$$

Check yourself that $F(AB) = F(A) \circ F(B)$ and that F is 1 to 1 and onto.

-	_	_	

Example 1.2. Here are some important examples of Möbius transformations.

1. translation:
$$\begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix}$$
 corresponds to $z \mapsto z + \alpha$.
2. rotation: $\begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix}$ with $|k| = 1$
3. dilation: $\begin{bmatrix} \sqrt{k} & 0 \\ 0 & 1/\sqrt{k} \end{bmatrix}$ with $k > 0$ corresponds to $z \mapsto kz$
4. inversion: $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ corresponds to $z \mapsto 1/z$

Theorem 1.3. Translation, rotation, dilation, and inversion generate MT.